(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)

Rewrite Strategy: FULL

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0'
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0'), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0', y) → false
gt(s(x), 0') → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)

S is empty.
Rewrite Strategy: FULL

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

TRS:
Rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0'
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0'), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0', y) → false
gt(s(x), 0') → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)

Types:
minus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
if :: true:false → s:0' → s:0' → s:0'
gt :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
0' :: s:0'
gcd :: s:0' → s:0' → s:0'
if1 :: true:false → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
if2 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
minus, gt, gcd, ge

They will be analysed ascendingly in the following order:
gt < minus
minus < gcd
gt < gcd
ge < gcd

(6) Obligation:

TRS:
Rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0'
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0'), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0', y) → false
gt(s(x), 0') → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)

Types:
minus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
if :: true:false → s:0' → s:0' → s:0'
gt :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
0' :: s:0'
gcd :: s:0' → s:0' → s:0'
if1 :: true:false → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
if2 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

The following defined symbols remain to be analysed:
gt, minus, gcd, ge

They will be analysed ascendingly in the following order:
gt < minus
minus < gcd
gt < gcd
ge < gcd

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)

Induction Base:
gt(gen_s:0'3_0(0), gen_s:0'3_0(0)) →RΩ(1)
false

Induction Step:
gt(gen_s:0'3_0(+(n5_0, 1)), gen_s:0'3_0(+(n5_0, 1))) →RΩ(1)
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) →IH
false

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

TRS:
Rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0'
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0'), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0', y) → false
gt(s(x), 0') → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)

Types:
minus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
if :: true:false → s:0' → s:0' → s:0'
gt :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
0' :: s:0'
gcd :: s:0' → s:0' → s:0'
if1 :: true:false → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
if2 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Lemmas:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

The following defined symbols remain to be analysed:
minus, gcd, ge

They will be analysed ascendingly in the following order:
minus < gcd
ge < gcd

(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol minus.

(11) Obligation:

TRS:
Rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0'
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0'), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0', y) → false
gt(s(x), 0') → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)

Types:
minus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
if :: true:false → s:0' → s:0' → s:0'
gt :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
0' :: s:0'
gcd :: s:0' → s:0' → s:0'
if1 :: true:false → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
if2 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Lemmas:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

The following defined symbols remain to be analysed:
ge, gcd

They will be analysed ascendingly in the following order:
ge < gcd

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
ge(gen_s:0'3_0(n379_0), gen_s:0'3_0(n379_0)) → true, rt ∈ Ω(1 + n3790)

Induction Base:
ge(gen_s:0'3_0(0), gen_s:0'3_0(0)) →RΩ(1)
true

Induction Step:
ge(gen_s:0'3_0(+(n379_0, 1)), gen_s:0'3_0(+(n379_0, 1))) →RΩ(1)
ge(gen_s:0'3_0(n379_0), gen_s:0'3_0(n379_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

TRS:
Rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0'
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0'), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0', y) → false
gt(s(x), 0') → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)

Types:
minus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
if :: true:false → s:0' → s:0' → s:0'
gt :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
0' :: s:0'
gcd :: s:0' → s:0' → s:0'
if1 :: true:false → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
if2 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Lemmas:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
ge(gen_s:0'3_0(n379_0), gen_s:0'3_0(n379_0)) → true, rt ∈ Ω(1 + n3790)

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

The following defined symbols remain to be analysed:
gcd

(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol gcd.

(16) Obligation:

TRS:
Rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0'
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0'), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0', y) → false
gt(s(x), 0') → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)

Types:
minus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
if :: true:false → s:0' → s:0' → s:0'
gt :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
0' :: s:0'
gcd :: s:0' → s:0' → s:0'
if1 :: true:false → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
if2 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Lemmas:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
ge(gen_s:0'3_0(n379_0), gen_s:0'3_0(n379_0)) → true, rt ∈ Ω(1 + n3790)

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

No more defined symbols left to analyse.

(17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)

(18) BOUNDS(n^1, INF)

(19) Obligation:

TRS:
Rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0'
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0'), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0', y) → false
gt(s(x), 0') → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)

Types:
minus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
if :: true:false → s:0' → s:0' → s:0'
gt :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
0' :: s:0'
gcd :: s:0' → s:0' → s:0'
if1 :: true:false → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
if2 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Lemmas:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
ge(gen_s:0'3_0(n379_0), gen_s:0'3_0(n379_0)) → true, rt ∈ Ω(1 + n3790)

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

No more defined symbols left to analyse.

(20) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)

(21) BOUNDS(n^1, INF)

(22) Obligation:

TRS:
Rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0'
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0'), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0', y) → false
gt(s(x), 0') → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)

Types:
minus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
if :: true:false → s:0' → s:0' → s:0'
gt :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
0' :: s:0'
gcd :: s:0' → s:0' → s:0'
if1 :: true:false → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
if2 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'

Lemmas:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)

Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)

(24) BOUNDS(n^1, INF)